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Infinities of the massless spin4 triangle diagram in quantum 
gravity 

H E De Meyert 
Rijksuniversiteit Gent, Seminarie voor Wiskundige Natuurkunde, Krijgslaan 271, B-9000 
Gent, Belgium 

Received 8 August 1974 

Abstract. In a massless fermion-graviton interaction field theory, the triangle graph with 
three external graviton lines is considered, The infinities arising from this and associated 
graphs are calculated in the dimensional regularization scheme, putting the energy- 
momentum of one of the external legs equal to zero. These infinities are exactly cancelled 
by those of the three-graviton graph originating from the graviton self-energy counter- 
Lagrangian density. 

1. Introduction 

Recently, attention has been paid to  the calculation of various graviton self-energy 
contributions and to the counter-Lagrangians needed to  cancel the infinities arising. 
Dimensional regularization manifested itself thereby as a useful tool (Capper 1973, 
Capper and Duff 1973, Capper et a1 1973a, b and De Meyer 1974, to be referred to as I). 
Higher-order diagrams in quantum gravity were also briefly considered (Capper and 
Leibbrandt 1974). 

In the present paper, we will consider the problem of a spin-i particle triangle 
diagram with graviton lines attached; for the sake of convenience, we will restrict 
ourselves to a massless fermion loop-particle. It will be checked whether the infinities 
arising from the entity consisting of this diagram and two other associated diagrams of 
the same type, are cancelled, within the dimensional regularization scheme, by the 
infinities emerging from a three-graviton diagram. The latter diagram originates from 
the counter term which has resulted from the electron one-loop graviton self-energy 
calculation in I. 

We will specifically choose the weight of the fermion field in such a way that the vertex 
functions needed appear in their most simplified form for calculation. As a consequence 
of Borchers’ theorem, this simplification is justified in this case. As a second simplifi- 
cation, we will put the energy-momentum of one of the external graviton lines equal to 
zero. Although complete generality cannot be achieved by this procedure, the proof of 
our statement is by no means trivial. 
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2. The triangle diagram 

The interaction of massive sp in3  particles and gravitons is described by the Lagrangian 
density of I : 

9 = 9 ~ r a v - ~ - g ) A L n r ~ Y n a ” , ~ - (  - g ) ’ ~ ( m - a c k i m n B k l m Y n j ) 5 ) ~ )  (1) 

where YgraV is the usual Einstein-Lagrangian density. In (1) we have put : 

w + q = A ,  (2) 

the parameter w denoting the weight of the fermion field. The metric used is the 
Minkowski metric (+, +, +. -), La’ is the ‘tiierbein’ gravity field and Bklm is related to 
the ‘tiierbein’ connection Bplm by : 

Bklm = L p k B p l m  = L , k L V I ( L m l r ~ v - a y L m v ) .  (3) 
Finally, g stands for the determinant of g , ,  and ckfmn is the complete antisymmetrical 
tensor, whereas all other symbols have their usual meaning. In order to obtain the mass- 
less fermion theory, the mass is put equal to zero, both in the Lagrangian density and in 
the Lagrangian counter term. This operation is permitted as long as finite contributions 
are not taken into account (Capper 1974). 

The energy-momentum of one definite external graviton line geq (see figure 1) is set 
equal to  zero throughout the paper. The weight of the fermion field is chosen such as to 
bring the two-fermion-graviton vertex function in a simple form for calculation. eg : 

(4) V,3p(k: P1, P 2 )  = - h & ? p  

.1(14/?, = t ( L 4 p  + ‘ l p 4 A .  

with : 

( 5 )  

where q is the difference between the inflowing momenta p 1  and p 2  of the ingoing and 
outgoing fermion respectively. 

In accordance with the dimensional regularization procedure, the energy-momentum 
vector of the loop particle becomes a vector in 2w-dimensional Euclidean space. As we 
are not concerned with the finite contribution from the diagram. it is unnecessary to 
work in Minkowski space, or to rotate back to Minkowski space at the end of the 
calculation. Putting 

- k l  = + k 2  = k, (6 )  

Figure 1. The triangle diagram. 
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which follows from the energy-momentum conservation law, the amplitude for the 
triangle diagram can be written as : 

The trace is worked out after extending the y algebra to 2w-dimensional space (Capper 
and Duff 1973), whereas the integral in (7) can be evaluated with the help of the integral 
formulae given in the appendix. After a straightforward but lengthy calculation the 
following expression is found for the pole part of the amplitude (7): 

+ 6Cq( - &k,k,k,ka + 21ik2F,,,ya - &k2Ez,,,a + &k2)’6U,6,, - &k2)2Gu,.,a) 

+ &k,Ha,,a., f kqH.,yd,<) - &k2(kak,G7a,,, + k,kaGa,,,,) 

+ &k2(k,k,G,a,,s + k,k,G,,,,, + k,k,G.ld,€, + k,k&,€q) 

+ &k2[k&S,,6,, + k,SYd6aq + k , 4 , 6 , ,  + k,6,,6,,) 

+ kq(k ,~ , ,6 , ,  + k,6,,6,, + k,&,6,, + kd6,,6,,)1 

- &k2P,(kuG,a,pq + k,Gyb,uq + k,Gzp.aq + kaGu,,,,) 

+ kq(kzGy,,,, + k,G,a,,, + kyGz,,,, + kaGa,.,e)l 

+ &k2)2(8aj?Gya,,, + 6 y d G a , . < , )  

- &k2)2(8z,G,a,,q + 6,,G,a,aq + ~,,Gu,.a, + 6a&,yq)). (8) 

E,,,ya = k,k,6,, + k,ka6,,, (9) 

Fz,,ya = k,k,6,, + kaka&, + k,k,6,, + k,k,6,, 7 (10) 

Gz,.Y6 = 6,,6,, + 6u,6, ,  3 (1 1) 

H,p,6 , ,  = G,,k,k,k,+G,,k,k,k,+G,,k,k,k,+ G,,k,k,k,. (12) 

in which 

The fact that in equation (8) the tensorial indices (t, 7) attached to  the zero energy- 
momentum line do mix with the other indices makes the foregoing calculation non- 
trivial. 

The diagram in figure 1 must also be completed by a similar diagram, differing from 
the former one by a change of loop direction. This is equivalent to an interchange of 
the (U, /3) and (y, 6) indices and an overall change of sign of the four-vector k.  As equation 
(8) is invariant to these transformations, the total amplitude is given by twice the contri- 
bution expressed in equation (8). 

3. Associated diagrams 

To complete our proof, the two diagrams in figures 2 la) and (b )  must also be taken into 
consideration. A third diagram with the zero-momentum line on the right gives zero 
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J J 

( a )  ( b )  

Figure 2. The two associated diagrams 

contribution in the context of dimensional regularization. (This would not be true in a 
theory with mass # 0). 

The two-graviton two-fermion vertex with the same weight of the fermion field as in 
4 2 appears to be (see I) :  

I t  is easy to show that in 2w-dimensional space the yny5  part of equation (13) gives no 
contribution to the amplitude from the diagrams in figure 2. After a similar calculation 
to that in 0 2 and also using the results of Capper et a1 (1973b) to  evaluate the occurring 
integrals, the following expression is found for the pole part of the total amplitude of 
the diagrams of figure 2 : 

Adding twice the contribution of equation (8) to the contribution of equation (14), the 
pole part of the total third-order amplitude of our problem is found. This part will now 
be compared to the same order contribution originating from the counter-Lagrangian. 

4. The counter-Lagrangian contribution 

The counter term in the massless case is (see I ) :  

Js 1 1 A4p = -____ -(3R,,R”’- R2). 
2-0 (47~)’ 60 



Infinities of massless spin-3 triangle diagram 777 

R,,  is the Einstein tensor defined by : 

R,,  = qp," - - r ; E p  + r : , r ; p  

where 

q v  = t g P b ( g p u , v  + g u , ' , / l -  g,, , ,).  (17) 

The counter term in equation (15) is four-dimensional and all further expansions 
proceed in four-dimensional Euclidean space. Using the well known parametrization : 

2' = g p v  J g  = 6,,+ ti4,,. (18) 

where ti is the gravitational coupling constant, the expressions for ( , / g ) R 2  and (Jg)R, ,Rp" 
up to third order in ti can be evaluated. Therefore. R, ,  is expanded as follows : 

(19) R,, = u,, + K 2 t , ,  + O(ti3), 

where 

(20)  1 
r p v  = T [ $ p p , v p  + 4 ' p . p ~ -  4 p ~ , p p + ) ~ p v 4 i A , p p ] '  

and 

t w v  = a[ - t $ . i l . p ( b u o , v  + 4 p A . . p 4 p A . v +  4 A A , p $ p v , p  + 2 4 p p , u 4 u r , . p -  2 4 , p , A $ v p , A  

+ 2 q  - 4 p o ~ p o , "  - $ , , a 4 p a . v  - 4 p 0 4 , v , u  + 4 . i M 4 l . U . P  

( 21 )  1 + 4 p A . p 4 v i  f ~ 6 ~ v ~ p o ~ ~ ~ , o - t 6 g v ~ i u ~ l o , p - T ~ p v ~ A l . , p ) l .  

The third-order term of ( J g ) R 2  is given by : 

r p v ( 2 f p \  + r p a 4 0 v +  r o \ , 4 p u - ~ 4 A A r p v ) t i 3 ~  (23)  
As only the three-graviton diagram with one zero energy-momentum line is considered. 
only the terms that have no derivatives in at least one 4 field are witheld. After this 
simplification, only terms with one 4 field that is not differentiated appear. I t  is precisely 
on that field that the functional derivative 6/64,, operates, since the zero energy- 
momentum is associated with the ((, q )  tensorial indices. Taking then subsequently the 
functional derivatives 6/84,, and 6/64,,, going over to momentum space and carrying 
out the necessary symmetrization operations, the three-graviton diagram contributions 
from equations (22 )  and ( 2 3 )  are obtained. They read : 



778 H E De Meyer 

The three-graviton amplitude for the counter term of equation (1 5 )  thus becomes 

This is exactly the expression found by adding twice equation (8) to equation (14), as 
may be verified directly. This completes our proof. 

Considering equations (25) and (26), it is seen that the terms which contain the factor 
6,, are second-order amplitudes, satisfying the second-order Ward identities quoted in 
I. Calculating the trace with respect to the indices ( and q in both equations yields the 
second-order contributions (in K) of the corresponding parts of the counter term apart 
from a numerical factor - 2. 

5. Summary 

I t  has been shown that the self-energy counter term Lagrangian cancels the infinities of 
the fermion triangle loop with three graviton lines attached, in the particular case that 
one of the gravitons has zero energy-momentum. The technique and some results 
outlined in the present paper could be of use in proving the same statement in the case of 
a scalar particle loop, of a photon loop or of a neutrino loop, although the calculations 
may become more tedious. 
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Appendix 

In this appendix, a method is given to calculate integrals of the type : 

wheref(p,) represents a polynomial in p a  of degree not greater than six. Iff(p,) can be 
factorized such that p2 appears as a factor, we are immediately led to the integrals 
calculated by Capper et af (1973b). To see how the method works in general, the integral 
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J ,  is calculated in detail: 

1 
(27~)'") (p')'(p - k)' ' 

Using three times the parametrization : 

together with the formula 

d'"p exp( - ap' 2 2bp)  = Re(a) > 0. s 
J ,  can be reduced to  the form: 

Making the substitutions 7 = pt. a = (1 +t)ps.  one finds: 

J ,  = ~ ds  Ioa dt  Iocc dbp' -"( 1 + t)' -"( 1 + s)-" exp s(1 + t )  k') . 
(4n)" 0 

Integration with respect to fl  and t yields: 

1 rcc 

J - L r ( 3 - ~ ) ( k  2 ) " - 3  J + s ) 3 - 2 0 s ~ - 3  

- (47t)" 0 

1 
= - r ( 3 - w ) ( k 2 ) " - 3 B ( ~ - 2 .  w - l ) ,  

(47r)" 

where B(x .  y) is Euler's integral of the first kind (Gradshteyn and  Ryzhik 1965). The 
other integrals Jj corresponding to polynomials of degree j -  1 can be evaluated in a 
similar manner, using differentiation under the integral sign in (A.4). This leads to : 

( A 4  

64.9) 

J 3  = $ dZ"P P,Pp = klkp13 +b,,I,, (A. 10) 

(A.11) 

d2"P P,PpP,Pa = k ,k ,k ,kJ ,  + c kukp6,al* + h36,,1,, (A. 12) 

1 

d2"P Pl 

(p2)'(p- k)' 

= k,k&,l5 + 1 k$p,16, 
d2"P PaPpPy 

3 P  

(P')'(P - k)' 6 11 3 I' 

d2"P PlPflPYPaPA = k k k k k I 
a p 7 6 I I O  + kakpk,ba,ll1+ 1 kudp,Ja,l ,z ,  (A.13) 

J 6  = f (2.)2" ( ~ ' ) ~ ( p  - k)' 10P 1 5 ~  
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where the summations are restricted t o  only those permutations of the indices which 
give rise to  essentially different terms. The functions I are given by : 

1 
1 2  = - r ( 3 - ~ ) ( k ~ ) " - ~ B ( ~ - l . ~ - l ) .  

(4n)" 

- (4n)" 
1 

I - - r ( 3 - ~ ) ( k ~ ) " - ~ B ( ~ .  W -  l), 

I, = W ~ ( ~ - W ) ( ~ ~ ) " - ~ B ( W -  1 

I ,  = ~ r ( 2 - o ) ( k 2 ) " - ' B ( w , w ) t ,  1 

1. CO)$, 

1 
I ,  = - - - r ( 3 - ~ ) ( k ~ ) " - ~ ~ ( ~ + l , ~ - l ) ,  

(4n)" 

1 
I = - r ( 3  - ~ ) ( k ~ ) "  - 3 ~ ( ~  + 2. - 1). (4n)" 

(47c)' 

(4n)" 

1 
1, = - r ( 2 - ~ ) ( k ~ ) " - ~ B ( ~ +  1. U)$, 

1 
I, = -r(l  -W)(k2)"-'B(w. w + l ) $ ,  

(A. 16) 

(A. 17) 

(A. 18) 

(A. 19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

1 
I , ,  = - 4 - ( 2 - ~ ) ( k ~ ) " - ~ ~ ( ~ + 2 ,  (A.25) 

1 1 2  = -U1 -o ) (k2 )w-1B(o+  1 ,  W +  l )$ ,  (A.26) 

I = __ r(3 - W )  (k2yJ - 3 ~ ( W  + 4, - 1). (A.27) 

I,, = __ r ( 2  - U)( k2)w-  *B(w + 3. W) $, (A.28) 

1 1 ,  = -r(l-W)(k2)"-1B(o+2.w+1)$, (A.29) 

(47r)l' 

(4n)" 

(4x1" 

(4n)'" 

1 
(477)" 

1 

1 

1 
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1 
I , ,  = -r(-o)(k2)"B(w+1,0+2)+, 

(474" 
(A.30) 

For our purposes, it has been sufficient to know the pole term in the Laurent expansion 
around w = 2 of the expressions (A.15) to (A.30). 

Finally, we wish to point out an interesting simplification which is possible in the 
case of integrals of the type : 

(A.3 1) 

I t  is based on the identity 

2pk = p2+k2-(p-k)*.  (A.32) 

Indeed, substituting equation (A.31), we obtain a sum of three integrals, the first one 
being of a simpler type, the second one having a numerator of lower degree in pa its 
integrand and the third one being zero in the dimensional regularization scheme. 
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